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The effectiveness of a cylindrical perforated liner with mean bias flow in its absorption
of planar acoustic waves in a duct is investigated. The liner converts acoustic energy
into flow energy through the excitation of vorticity fluctuations at the rims of the
liner apertures. A one-dimensional model that embodies this absorption mechanism
is developed. It utilizes a homogeneous liner compliance adapted from the Rayleigh
conductivity of a single aperture with mean flow. The model is evaluated by comparing
with experimental results, with excellent agreement. We show that such a system can
absorb a large fraction of incoming energy, and can prevent all of the energy produced
by an upstream source in certain frequency ranges from reflecting back. Moreover,
the bandwidth of this strong absorption can be increased by appropriate placement
of the liner system in the duct. An analysis of the acoustic energy flux is performed,
revealing that local differences in fluctuating stagnation enthalpy, distributed over
a finite length of duct, are responsible for absorption, and that both liners in a
double-liner system are absorbant. A reduction of the model equations in the limit of
long wavelength compared to liner length reveals an important parameter grouping,
enabling the optimal design of liner systems.

1. Introduction
Perforated liners are used in engineering systems for their ability to absorb sound. In

particular, modern combustion systems such as gas turbines and jet engines are often
operated under conditions that make them susceptible to combustion instabilities,
and by including a passive damping device, such as a liner, these acoustically driven
instabilities can be suppressed. The high temperatures present in the jet flows of these
systems require that a bias flow be blown through a perforated liner to protect the walls
of the duct enclosing the jet. Remarkably, this bias flow has been found to be capa-
ble of providing the additional benefit of improving the effectiveness of the liner as
an absorber of sound. In the present work we investigate the effectiveness of a per-
forated liner with bias flow in absorbing planar acoustic waves propagating in a duct
of circular cross-section.

Early work considered the behaviour of perforated liners in the absence of mean
flow. The reflection and transmission properties of an infinite plane perforated by a
homogeneous array of orifices were examined by Ffowcs Williams (1972). Leppington
& Levine (1973) performed the same analysis with the help of an integral equation,
which allowed a correction to the Ffowcs Williams result. They also considered the
case when the screen is backed by an infinite rigid wall. Acoustic liners are never
infinite, however, and the acoustic properties of a semi-infinite perforated screen were
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investigated by Leppington (1977) using a Wiener–Hopf approach. In the absence
of flow, no damping mechanisms are present in the linear acoustic equations; only
the inclusion of nonlinear effects can predict dissipation of sound. For example,
Cummings (1983) considered power losses due to high-amplitude sound transmission
through orifice plates, which required that nonlinear terms be included in the
analysis.

If the holes in a perforated screen are sufficiently separated relative to their
diameter, then they nearly behave as though in isolation. Consequently, theoretical
investigations of perforated screens can utilize the significant amount of work carried
out in exploring the acoustic properties of a single orifice. Howe (1979b) developed
an expression for the Rayleigh conductivity of an aperture through which a high-
Reynolds-number flow passes. In such a configuration, viscous effects are limited to the
separation of the flow from the rim of the aperture. The harmonic pressure difference
across the orifice thus leads to the periodic shedding of vorticity, and consequently
acoustic energy is converted into mechanical energy, which is subsequently dissipated
into heat. This mechanism is linear, in the sense that the fraction of incident
sound energy that is absorbed is independent of the amplitude of the sound. The
phenomenon is also present in flow issuing from a nozzle (Howe 1979a), trailing edge
flow (Howe 1986b) and abrupt area expansions (Dupère & Dowling 2000). In each
example, an unsteady Kutta condition is applied to determine the magnitude of the
fluctuating vorticity. The applicability of this condition was addressed by Crighton
(1985), who discussed its consequences in several contexts, including the input of
acoustic energy into the vortical motion of a shear layer.

The vortex shedding mechanism was studied further by Hughes and Dowling,
who presented analyses of screens with regular arrays of slits (Dowling & Hughes
1992) and circular perforations (Hughes & Dowling 1990) with mean bias flows, to
suppress the screech instability. They showed that if a rigid backing wall is included,
it is theoretically possible to absorb all impinging sound at a particular frequency,
because reflection from the wall allows substantially more interaction between the
sound and screen. The perforated liner arrangement was investigated experimentally
by Jing & Sun (1999), with an additional term included in the model to account for
screen thickness. Their results revealed that the thickness of the screen is crucial, and
in subsequent work (Jing & Sun 2000) they numerically solved the governing equation
for a single aperture in a thick plate. Their results reduce to those of Howe (1979b) in
the limit of zero thickness. These investigations only considered acoustic waves that
impinge upon a perforated screen. Many acoustically driven instabilities primarily
contain axial acoustic modes, however, and the present investigation focuses on the
absorptive properties of a cylindrical perforated liner in the presence of planar duct
modes.

Cellular acoustic liners, which consist of regular arrays of cavities, have also been
investigated. These liners rely primarily on Helmholtz resonance of the cavities for
absorption. Ko (1972) performed an analysis of a circular duct with such a liner, with
a uniform mean flow present in the duct, using a finite difference approximation of the
equations. While most theoretical investigations have been carried out in the frequency
domain, Sbardella, Tester & Imregun (2001) used a time-domain approach to develop
a one-dimensional model for the acoustic response of a typical liner cavity, and coupled
this model to the solution of the two-dimensional duct flow equations. Tam et al.
(2001) used direct numerical simulation to explore the dissipation mechanisms of a
single liner cavity in detail, and confirmed previous observations that vortex shedding
is the dominant mechanism of absorption for incident waves of high amplitude. The
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Figure 1. Schematic of acoustic waves and flow quantities in a lined duct.

use of bias flow to improve the performance of acoustic liners has recently been
investigated by Follet, Belts & Kelly (2001).

The present investigation will consist of both modelling and experiment. Our
model will be based on the Rayleigh conductivity of Howe (1979b), and like Hughes
& Dowling (1990) and Jing & Sun (1999) we will develop an effective liner compliance
based on the principle that unsteady vortex shedding from the aperture rims is the
primary mechanism for absorption. In § 2 the model equations will be developed, and
the treatment of different liner configurations will be discussed. In § 3 the nature of
liner absorption will be analysed, which will provide useful insight for designing more
effective liners. The model equations will be solved and compared with experimental
results in § 4. Finally, in § 5 we will identify important parameters that enable the
optimal design of liner systems, which we will discuss at length.

2. Model
A quasi-one-dimensional lined-duct model is developed in this section, beginning

with the derivation of a set of equations for the acoustic quantities in a duct with a
general wall compliance. The compliance has been defined by Leppington (1977) as
the ratio of the normal derivative of a quantity on a surface to its jump across the
surface. In the case of the stagnation enthalpy perturbation, which we use here,

∂B ′

∂n
= η[B ′]0

+

0−, (2.1)

where n is the wall normal. We will construct an effective compliance for the liner
based on the results of Howe (1979b) for a single aperture with steady flow.

2.1. Lined-duct equations

Consider a circular duct of uniform cross-section, consisting of two sections with rigid
walls, separated by a lined section for which the compliance is uniformly equal to η1

(see figure 1). A steady flow of velocity ūu is present in the upstream duct, as well
as a steady inward bias flow through the liner of uniform average velocity v̄1. The
subscript on v̄1 denotes it, as well as other quantities and parameters, as describing
liner 1, the innermost liner. Another liner would be denoted by subscript 2, and so
on. Both mean flows are small and the stagnation temperatures associated with them
are equal. Thus, the mean density can be uniformly approximated by ρ̄ and the mean
speed of sound by c̄. If the length of the lined section is L, and the cross-sectional
area and circumference of the duct are Sp and C1 respectively, then the downstream
flow velocity is ūd = ūu + (C1L/Sp)v̄1. As there are no circumferential variations in
the flow or boundary conditions, the problem is axisymmetric.



310 J. D. Eldredge and A. P. Dowling

The axial position is denoted by x, and x = 0 coincides with the interface of the
lined section and the upstream duct. Harmonic pressure fluctuations are produced in
the upstream section, of sufficiently low frequency that only plane waves are allowed
to propagate. Because of the mean flow, it is more natural to describe the acoustic
waves in terms of fluctuating stagnation enthalpy, B ′ = p′/ρ̄ + ūu′, where p′ is the
fluctuating pressure and u′ is the fluctuating axial velocity. Thus, in the upstream
section, these fluctuations have the form

B ′(x, t) = B̂(x) exp[iωt] = B+
u exp[i(ωt − k+

u x)] + B−
u exp[i(ωt + k−

u x)], x < 0,

(2.2a)

where ω is the angular frequency and k+
u and k−

u are the forward- and backward-
travelling wavenumbers, respectively. We adopt the usual convention that only the
real components of these fluctuations are physically relevant. In the downstream
section, the fluctuations are of the same form,

B ′(x, t) = B̂(x) exp[iωt] = B+
d exp[i(ωt − k+

d x)] + B−
d exp[i(ωt + k−

d x)], x > L.

(2.2b)

The two amplitudes in the downstream section, B
±
d , are related by a known boundary

condition. A generic relationship will be assumed, B−
d = RdB

+
d , where Rd is the

reflection coefficient. In § 2.3 we will discuss the specific form of Rd .
We introduce the dimensionless variables

x → x/L, t → c̄t/L, u → u/c̄, v → v/c̄,

B → B/c̄2, ρ → ρ/ρ̄, p → p/(ρ̄c̄2),

}
(2.3)

and define the upstream and downstream Mach numbers, Mu = ūu/c̄ and Md = ūd/c̄,
respectively, and the bias flow Mach number, Ml,1 = v̄1/c̄. The one-dimensional
inviscid equations of motion give the wavenumbers as

k+
u =

k

1 + Mu

, k−
u =

k

1 − Mu

, (2.4a, b)

k+
d =

k

1 + Md

, k−
d =

k

1 − Md

, (2.4c, d )

where k ≡ ω/c̄. The velocity fluctuations in each of these two sections also follow,
with amplitudes

û(x) =
B+

u

1 + Mu

exp(−ik+
u Lx) − B−

u

1 − Mu

exp(ik−
u Lx), x < 0, (2.5a)

û(x) =
B+

d

1 + Md

exp(−ik+
d Lx) − B−

d

1 − Md

exp(ik−
d Lx), x > 1. (2.5b)

In the lined region 0 < x < 1, the stagnation enthalpy and velocity have the form

B(x, t) = B̄ + B̂(x) eikLt , (2.6a)

u(x, t) = ū(x) + û(x) eikLt . (2.6b)

Note that the mean axial velocity varies with x. To first order,

ū(x) = Mu +
C1L

Sp

Ml,1x. (2.7)
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To connect the three sections, we require that the stagnation enthalpy and velocity
perturbations match at x = 0 and x = 1:

B̂(0) = B+
u + B−

u , (2.8a)

û(0) =
B+

u

1 + Mu

− B−
u

1 − Mu

, (2.8b)

B̂(1) = B+
d (exp(−ik+

d L) + Rd exp(ik−
d L)), (2.8c)

û(1) = B+
d

(
exp(−ik+

d L)

1 + Md

− Rd exp(ik−
d L)

1 − Md

)
. (2.8d)

We will develop equations in x ∈ [0, 1] for B̂(x) and û(x) by appealing to a balance
of mass and momentum with respect to a control volume at x that spans the duct
cross-section and has infinitesimal axial length, dx. First we define a continuous
flow distribution through the liner, v1(x, t), positive for inward flow. As with other
quantities, v1 is the sum of a mean part and harmonic perturbation,

v1(x, t) = v̄1 + v̂1(x) eikLt . (2.9)

A balance of mass across the control volume leads to

∂ρ

∂t
+

∂

∂x
(ρu) =

C1L

Sp

ρv1. (2.10)

The flow through the liner acts like a source (or sink) of mass. From momentum
balance we obtain

ρ
∂u

∂t
+ ρu

∂u

∂x
+

∂p

∂x
= 0, (2.11)

which is simply the one-dimensional Euler equation.
By introducing the mean-harmonic forms of the quantities, and matching terms with

linear dependence on fluctuating components, we can form acoustic perturbations of
equations (2.10) and (2.11). We also assume that the fluctuations are isentropic, so
ρ ′ = B ′ − ūu′. We arrive at

ikLB̂ + 2ū
dB̂

dx
+ (1 − ū2)

dû

dx
=

C1L

Sp

v̂1, (2.12a)

ikLû +
dB̂

dx
= 0. (2.12b)

The equations are more amenable to solution if we express them in terms of the new
characteristic quantities,

ψ+ ≡ 1
2
(1 + ū)[B̂ + (1 − ū)û], (2.13a)

ψ− ≡ 1
2
(1 − ū)[B̂ − (1 + ū)û]. (2.13b)

In an unlined duct, plane waves obey the relation u′ = ±B ′/(1±M) and the quantities
revert to (ψ+, ψ−) = (B̂, 0) for forward-travelling waves or (ψ+, ψ−) = (0, B̂) for
backward-travelling waves. When these quantities are substituted into equations
(2.12a) and (2.12b), we arrive at

dψ+

dx
= − ikL

1 + ū
ψ+ +

1

2

C1L

Sp

v̂1, (2.14a)
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dψ−

dx
=

ikL

1 − ū
ψ− − 1

2

C1L

Sp

v̂1. (2.14b)

Through equations (2.8a–d ), the boundary values of ψ+ and ψ− are

ψ+(0) = B+
u , ψ+(1) = B+

d exp(−ik+
d L), (2.15a, b)

ψ−(0) = B−
u , ψ−(1) = B−

d exp(ik−
d L). (2.15c, d )

Since the equations are first order, we need only enforce two boundary conditions. It
is sufficient to assume that the amplitude, B+

u , of the incident wave is known, relative
to which all other amplitudes are measured. The downstream reflection depends only
on geometry and mean flow conditions, and can be used to define a linear relationship
between fluctuating quantities. We thus enforce

ψ+(0) = B+
u , (2.16a)

ψ−(1) exp(−ik−
d L) − ψ+(1)Rd exp(ik+

d L) = 0. (2.16b)

Equations (2.14a, b) are not closed, however, and the fluctuating liner flow, v̂1 must
be considered. The assumed compliance of the liner, η1, implies a local relationship
between v̂1 and the difference in stagnation enthalpy fluctuations across the liner.
Using (2.1) in conjunction with the linearized momentum equation in the normal
direction and the relation B̂ = ψ+ + ψ−, we arrive at

v̂1(x) =
η1

ikL
[B̂1(x) − ψ+(x) − ψ−(x)], (2.17)

where B̂1 is the fluctuating part of the stagnation enthalpy external to the liner,
B1(x, t) = B̄1 + B̂1(x) exp(ikLt). The behaviour of B̂1 depends upon the specific
configuration of the duct system. We consider three:

Configuration 1. Open exterior. When the liner is exposed to the ambient
environment it is satisfactory to assume that the pressure fluctuations (and hence
stagnation enthalpy fluctuations, since the two quantities are proportionally related
in the absence of mean flow) on the outside of the liner are zero. Thus, in this con-
figuration,

v̂1(x) = − η1

ikL
B̂(x) = − η1

ikL
[ψ+(x) + ψ−(x)], (2.18)

and the system (2.14a, b) and (2.18) is closed. Note that for this relation to be
appropriate, the exterior of the liner need only be exposed to a region in which
pressure fluctuations are negligibly small. Thus, a large enclosing cavity of volume
V � C1L/k is ensured to behave sufficiently similarly to a plenum to justify the
assumption.

Configuration 2. Annular cavity enclosed by rigid wall. In this configuration the liner
is surrounded by an annular cavity formed by a larger rigid cylinder. The cavity is
of the same axial length as the liner, with rigid walls at each end. If the cavity is
sufficiently shallow, then the acoustic equations in this region are one-dimensional,
as in the duct. Using a similar balance of mass and momentum through an annular
control volume of length dx leads to the non-dimensional equations

dB̂1

dx
= −ikLû1, (2.19a)

dû1

dx
= −ikLB̂1 − C1L

Sc

v̂1, (2.19b)
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where Sc is the cross-sectional area of the annular cavity. Together with the rigid-wall
boundary conditions

û1(0) = 0, û1(1) = 0, (2.20)

equations (2.14a, b), (2.17) and (2.19a, b) now form a closed system of four differen-
tial equations for the four unknowns ψ+, ψ−, B̂1 and û1. Note that such a config-
uration is not practically feasible if a bias flow is present, as there must be an inlet
in the cavity for the mass flow. However, if this inlet is choked, then the rigid-wall
approximation is likely to be sufficient.

Configuration 3. Annular cavity enclosed by second liner. This configuration is very
similar to the previous one, except that the annular cavity is now formed by a second
perforated liner. This arrangement might be found in a cooling flow system, in which
the outer skin supplies jets that impinge upon the outer surface of the inner liner.
We will assign compliance η2 and circumference C2 to the outer cylinder. Then the
equations in the cavity are

dB̂1

dx
= −ikLû1, (2.21a)

dû1

dx
= −ikLB̂1 − C1L

Sc

v̂1 +
C2L

Sc

v̂2, (2.21b)

where v̂2 is the inward fluctuating flow through the outer liner, related to the stagnation
enthalpy difference across the liner by

v̂2(x) =
η2

ikL
[B̂2(x) − B̂1(x)]. (2.22)

The boundary conditions for the cavity quantities are the same as before, (2.20). The
system of equations (2.14a, b), (2.17) and (2.20)–(2.22) is closed with some treatment
of B̂2, the fluctuating stagnation enthalpy external to the second liner, involving one
of the three configurations discussed. Note that, through conservation of mass, the
mean bias flows through each liner are related,

Mh,1 =
C2

C1

σ2

σ1

Mh,2. (2.23)

It is important to note that this one-dimensional model is only valid when the
planar mode is the only propagating mode in the duct. For a circular duct, this limits
the maximum frequency to

kL < 1.841

(
1

2

C1L

Sp

)
, (2.24)

to avoid the cut-on of the lowest azimuthal mode. Regardless of the configuration of
the duct–liner system, the system of equations constitutes a boundary value problem.
In principle, an analytical solution for this linear system is possible, though with a
linearly increasing mean duct flow it requires some effort. Even if the variability of the
mean duct flow is neglected, the solution is too complicated to be revealing (though
we do present the solution for a liner in Configuration 1 with no mean duct flow in
the Appendix). Thus, we solve the system numerically, using a shooting method to
enforce boundary conditions at either end of the lined section (see, e.g., Press et al.
1986). Before solution is possible, however, an expression for the liner compliance
must be developed.
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2.2. Liner compliance

The acoustic behaviour of a single aperture can be used to develop an expression for
the compliance of a homogeneous screen of such apertures, provided that the distance,
d , between neighbouring apertures is large compared with their diameters, 2a, and
the acoustic wavelength, λ, is much larger than the inter-aperture distance. Thus, we
require ka � kd � 1. This approach has been used by Hughes & Dowling (1990),
who adapted the Rayleigh conductivity of a single aperture in a plane proposed by
Howe (1979b) to construct a smooth compliance for a perforated screen with bias
flow. We will use the same approach in the present model.

The Rayleigh conductivity relates the fluctuating aperture volume flux, Q′ =
Q̂ exp(ikLt), to the fluctuating difference in stagnation enthalpy across the aperture.
In dimensionless form,

K = −ikL
Q̂

[B̂]0
+

0−

. (2.25)

For simplicity, we assume that the screen is composed of a square grid of apertures,
with equal distance d between adjacent apertures. The number of apertures per unit
area in the screen is N = 1/d2 and the fluctuating liner velocity is equal to v̂ = NQ̂.
Comparing (2.25) with (2.1), with consideration of the linearized momentum equation,
the compliance has a simple relationship with the conductivity of a single component
aperture,

η = NL2K = KL2/d2. (2.26)

The expression for the conductivity of a single aperture in an infinitely thin wall,
derived by Howe (1979b), is here adapted to the convention of positive exponent in
the harmonic factor exp(ikLt),

Ka =
2a

L
(γ + iδ), (2.27)

where a is the radius of the aperture, and γ and δ are given by equations (3.14)
of Howe (1979b). Each is dependent on only the Strouhal number of the flow,
St = ωa/Uc, where Uc is the convection velocity of vortices shed from the aperture rim.
Howe argues that this velocity is approximately equal to the mean velocity in the
aperture. If σ is the open-area ratio of the perforated screen, σ ≡ πa2/d2, then
the aperture Mach number, Mh ≈ Uc/c̄, is related to the mean liner flow through
Mh = Ml/σ , and

St ≈ ka

Mh

=
kaσ

Ml

. (2.28)

Howe’s model is based on a flow that behaves ideally, except insofar as viscosity is
responsible for the creation of vorticity at the sharp rim of the aperture. It neglects
many real flow features, such as wall thickness and accompanying boundary layer
dissipation. The inertial effect of liner thickness can be approximately accounted
for by regarding the stagnation enthalpy difference across the liner as a sum of
the contributions to unsteady vortex shedding and acceleration of the fluid in the
aperture. This leads to the following expression for the total compliance:

1

ηtot

=
πa2

σL2

1

Ka

+
t

σL
, (2.29)
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where t is the liner thickness, which may include a correction for end effects. Jing
& Sun (1999) have used this approach in their model, and their comparison with
experimental results is favourable. However, their more recent work (Jing & Sun
2000) has demonstrated that the effective thickness decreases with increasing bias
flow, behaviour which is absent from (2.29). Bellucci, Paschereit & Flohr (2002) have
developed a model for the acoustic impedance of a perforated screen backed by a
rigid wall that incorporates several effects, including viscous losses in the aperture and
an allowance for reactance of the external flow. Their model agrees well with their
experimental results, though they slightly overpredict the magnitude of reflection in a
thick screen at resonance. Because our goal is to predict the absorptive properties of
a perforated liner, embodied in the imaginary part of the compliance, the thickness
is less important than δ to model accurately and expression (2.29) is used. It will be
demonstrated that this approach is adequate.

It is worth noting that the Rayleigh conductivity of Howe (1979b) is strictly valid
in the presence of a mean bias flow only, and not with an additional grazing flow.
In subsequent work, Howe, Scott & Sipcic (1996) have numerically computed the
Rayleigh conductivity of an aperture with mean grazing flow only. We hypothesize
that the bias flow creates a thin boundary layer adjacent to the liner, in which the bias
flow is dominant. Vorticity fluctuations at the aperture rim are assumed to convect
normally from the liner, and cannot interact with the downstream aperture rim and
generate sound as is possible in the analysis of Howe et al. (1996). The convected
vorticity may eventually reach the edge of the boundary layer and interact with the
mean duct flow, but will probably lose coherence in the process and have negligible
effect on apertures downstream.

2.3. Downstream reflection coefficient

In boundary condition (2.16b), the reflection coefficient, Rd , appears and we now
discuss its form. In the trivial case of a semi-infinite downstream section, no acoustic
waves are reflected and Rd = 0. For an unflanged open end, which is more likely to
be encountered in practice, previous investigations can be relied upon to develop an
appropriate expression. In the absence of a mean duct flow, the reflection is nearly
perfect save the small energy lost to radiation. Levine & Schwinger (1948) have
solved this problem using a Wiener–Hopf approach. For low frequencies, the specific
acoustic impedance of the open end is well approximated by

ζ (kRp) = 1
4
(kRp)2 + i0.6kRp, (2.30)

where Rp is the radius of the duct. The reflection coefficient is related to ζ by

Rd =
ζ (kRp) − 1

ζ (kRp) + 1
exp[−i2k(L + Ld)], (2.31)

where Ld/L is the scaled downstream duct length. Thus, Rd can be approximated to
second order in kRp by

Rd = −
(
1 − 1

2
(kRp)2

)
exp[−i2k(L + Ld + δ)], (2.32)

where δ ≈ 0.6Rp is the end correction.
When mean flow is present, acoustic energy will be removed from the duct through

radiation as well as through excitation of jet instability waves (Cargill 1982a, b; Munt
1977, 1990). The latter effect can be accounted for by imposing a Kutta condition
at the edge. Cargill (1982a) has solved the problem using the Wiener–Hopf technique
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and assumed kRp � 1 to arrive at the following formula for Rd , second-order-accurate
in kRp:

Rd = −
∣∣∣∣ (1 − M2)g − (1 − M)

(1 − M2)g + (1 + M)

∣∣∣∣ (
1 − 1

2
(kRp)2

)
exp[−i2k((L + Ld)/(1 − M2) + δ)].

(2.33)

The function g = (g1 + ig2)/M is related to the jet instability and is given by Cargill
(1982a); g1 and g2 depend only on the duct Strouhal number, StRp

= kRp/M . For low
M and large StRp

, Rienstra (1983) found that the end correction is approximately the
same as in the no-flow case. Note that equation (2.33) has been adjusted to represent
the reflection of stagnation enthalpy, rather than pressure. For low M , it can be
approximated by

Rd = −
(

1 − 2g1

g2
1 + g2

2

M

) (
1 − 1

2
(kRp)2

)
exp[−i2k(L + Ld + δ)]. (2.34)

The magnitude of this formula is in excellent agreement with the results obtained by
Munt (1977) numerically.

Peters et al. (1993) have demonstrated that (2.34) agrees well with experimental
results for StRp

< 1. For StRp
� 2 (as in most cases considered experimentally in the

present paper), the coefficient of M in (2.34) tends to 1.1, though the experimental
results are less supportive of the formula in this range of Strouhal number. For all
cases under our consideration, however, the downstream duct Mach number will be
quite small, Md � 1, and therefore the precise dependence of the reflection coefficient
on the flow is not crucial. Under such a condition, the absorption results from
equations (2.32) and (2.34) are indistinguishable.

3. Acoustic energy considerations
To learn more about the nature of the liner absorption, it is useful to analyse the

flux of energy in the lined section. The acoustic energy flux vector in a moving flow
is given by (Morfey 1971)

Ii = 〈B ′(ρui)
′〉 = 1

4
[B ′(ρui)

′∗ + B ′∗(ρui)
′], (3.1)

where the angle brackets denote a time average of the product of the real components
of these quantities, the superscript ∗ signifies the complex conjugate, and the subscript
i denotes the direction (i = 1 corresponds to the axial direction, x). We now derive
an expression for the rate of change of I1 with x. First, note that our definition of
the quantities ψ+ and ψ− provides for a simple relation with the term in brackets in
(3.1),

I1 = 1
2
(|ψ+|2 − |ψ−|2). (3.2)

This relation attaches physical significance to ψ+ and ψ−. They represent the forward-
and backward-transmitted sound intensities in a duct with general wall impedance.
The derivative of this relation, when combined with equations (2.14a, b), leads
to

dI1

dx
=

1

4

C1L

Sp

(ψ+v̂∗
1 + ψ+∗v̂1 + ψ−v̂∗

1 + ψ−∗v̂1). (3.3)

The first two terms in this expression represent the rate of change of the forward-
travelling energy, and the latter two terms correspond to the the backward-travelling
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energy change. The liner flow v̂1, through the compliance relation (2.17), couples these
rates of change, ensuring that forward-travelling energy is continuously partitioned
into a transmitted portion, a portion that is absorbed by the liner and a portion that
is reflected upstream, and similarly for the backward-travelling energy.

The quantities ψ+ and ψ− are replaced by their definitions (2.13a, b) to express
relation (3.3) in terms of the primitive quantities. We arrive at

dI1

dx
=

C1L

Sp

〈B ′v′
1〉. (3.4)

When we integrate this expression over the length of the liner and multiply by the
duct area Sp , we arrive at the expected energy balance,

Sp[I1(1) − I1(0)] = C1L

∫ 1

0

〈B ′(x)v′
1(x)〉 dx, (3.5)

which accounts for the net change in duct energy by the flux of energy through the
liner. Because v′

1 has been defined as positive for inward flow, when the right-hand
side of equation (3.5) is negative, then energy has been absorbed by the liner. Using
relation (3.2) with the boundary values of ψ+ and ψ−, then

1
2
Sp(|B+

d |2 + |B−
u |2 − |B+

u |2 − |B−
d |2) = C1L

∫ 1

0

〈B ′(x)v′
1(x)〉 dx. (3.6)

The acoustic absorption of the liner, ∆, is defined as the net energy absorbed by the
liner, scaled by the energy incident upon the lined section. This latter energy is

I1,in ≡ 1
2
Sp(|B+

u |2 + |B−
d |2), (3.7)

and thus

∆ ≡ 1 − |B+
d |2 + |B−

u |2
|B+

u |2 + |B−
d |2 = −2C1L

Sp

∫ 1

0

〈B ′(x)v′
1(x)〉 dx

|B+
u |2 + |B−

d |2 . (3.8)

We now look more closely at the right-hand side of (3.5) to learn more about the
nature of the liner absorption. We will assume a configuration of two perforated
liners, with compliances η1 and η2, respectively, the second liner being exposed to the
ambient environment. If we use the compliance relation (2.17), then this leads to∫ 1

0

〈B ′(x)v′
1(x)〉 dx =

∫ 1

0

〈B ′
1(x)v′

1(x)〉 dx +
kL

2
Im

(
1

η1

)∫ 1

0

|v̂1(x)|2 dx. (3.9)

An analysis in the annular cavity, similar to the analysis in the duct that led to (3.5),
produces on application of the boundary conditions u′

1(0) = u′
1(1) = 0,∫ 1

0

〈B ′
1(x)v′

1(x)〉 dx =
C2

C1

∫ 1

0

〈B ′
1(x)v′

2(x)〉 dx. (3.10)

Finally, we use the second compliance relation (2.22) with B̂2 = 0, to arrive at∫ 1

0

〈B ′(x)v′
1(x)〉 dx =

kL

2
Im

(
1

η1

)∫ 1

0

|v̂1(x)|2 dx +
kL

2

C2

C1

Im

(
1

η2

)∫ 1

0

|v̂2(x)|2 dx.

(3.11)

It is apparent from equation (3.11) that, provided that the imaginary part of the com-
pliance of each liner is negative, then there will be a net outward flux of energy through
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Figure 2. Configuration of the perforated liner experiment.

the liner, and acoustic energy in the duct will be absorbed. From equation (2.29) we
have

Im

(
1

η

)
= −π

2

a

σL

δ

γ 2 + δ2
. (3.12)

Because δ is positive for all Strouhal numbers when the Rayleigh conductivity of
Howe (1979b) is used, the expression is always negative and thus energy is always
absorbed. The amount of energy absorbed will depend upon the magnitudes of both
terms in (3.11), prediction of which is left to the numerical solution of the model
equations.

It is worth contrasting the present model with that of Hughes & Dowling (1990).
In their work, an expression for the reflection coefficient of impinging acoustic waves
is developed. The absorption mechanism is the same as that considered here, and
the same Rayleigh conductivity is used to develop an effective screen compliance.
However, their reflection is also dependent upon a so-called ‘resonance parameter’,
Q ≡ (kd cos θ)2l/2a, where l is the distance between the screen and backing wall and
θ is the angle of incidence of acoustic waves (i.e. for normally incident sound, θ = 0).
The imaginary volume behind each aperture behaves like an individual Helmholtz
resonator, and Q measures the proximity of a liner to resonance of this volume. By
this theory, Q = 0 for waves that travel parallel to the liner, and consequently no
absorption is predicted. The crucial difference between this and the present theory
is our use of relation (2.17) as a local relationship in x. Rather than depending on
a Helmholtz-type resonance for maximum absorption, the integrated effect of local
fluctuating stagnation enthalpy difference is responsible.

4. Experiment
4.1. Experimental set-up

The experimental apparatus is shown in figure 2. Two equal-length sections of rigid-
walled pipe of diameter 12.7 cm and length 80 cm were separated by a section of
equal diameter and length 17.8 cm, perforated by a regular lattice of holes of diameter
0.75 mm and spacing 3.3 mm (i.e. σ1 = 0.040). This perforated section was surrounded
by a duct of diameter 15.2 cm and equal length, perforated by a different array of
holes of diameter 2.7 mm and spacing 17.0 mm (σ2 = 0.020). The thickness of both
perforated liners was 3 mm. The lined section was encased in a large cavity, into which
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was fed a steady supply of air by a centrifugal pump to produce bias flow through
the liner (measured by a Pitot probe in the cavity inlet), up to a maximum rate of
0.04 m3 s−1. One end of the duct system had four loudspeakers uniformly arranged
about the pipe circumference; the other emptied into a large plenum that allowed air
to be drawn through the system independently of the air fed through the lined section.
The rate at which this air was drawn (measured by a Pitot probe in the upstream
duct section) was limited by flow noise to 0.45 m3 s−1. The centrelines of the holes
in the inner liner were tilted downstream by approximately 45◦ so that flow passing
through them would travel downstream in the duct, even in the absence of a mean
duct flow; for this reason the effective thickness of this liner was larger by a factor of√

2.
Harmonic acoustic waves of magnitude between 90 and 120 dB, and frequency

between 100 and 700 Hz, were produced in the duct. This range is well below the
cut-on frequency of the first radial mode at 3290 Hz. Three Kulite transducers were
arranged on both the upstream and downstream sections to record the pressure
fluctuations. From these measurements the amplitudes of the left- and right-travelling
acoustic waves in each section were calculated using a two-microphone technique
(Seybert & Ross 1977), and thus the fraction of energy entering the lined section that
was absorbed could be deduced. The two-microphone formula for the amplitudes P +

and P − of these travelling waves in a given section is

P + =
p′

1 exp[−ikx1/(1 − M)] − p′
2 exp[−ikx2/(1 − M)]

exp[−i2kx1/(1 − M2)] − exp[−i2kx2/(1 − M2)]
, (4.1a)

P − =
p′

1 exp[ikx1/(1 + M)] − p′
2 exp[ikx2/(1 + M)]

exp[i2kx1/(1 − M2)] − exp[i2kx2/(1 − M2)]
, (4.1b)

where p′
1 and p′

2 are the measured pressures at transducer positions x1 and x2,
respectively. With three transducers in each section, three separate pairs could be
used to obtain the same amplitudes and thus improve the accuracy. After calculating
these amplitudes from both the upstream and downstream sections, equation (3.8)
was used to compute the absorption, using the relationship between the pressure
and stagnation enthalpy in axial plane waves, B ′ = p′(1 ± M), with the positive sign
chosen for waves travelling in the mean flow direction and the negative sign for those
travelling against it.

The frequency and flow conditions were held constant for each experiment. The
transducer signals were low-pass filtered, with the filter cut-off set at 1 kHz. The
signals were sampled at a rate of 5 kHz. For the data analysis, 30 contiguous time
segments of 1024 samples were recorded. All transducers were calibrated for gain
and phase relative to a reference channel, and the reference channel was calibrated
absolutely using a pistonphone. The signal coherence between reference and response
channels at the frequency of interest was always larger than 0.95. Though the flow-
induced noise in the apparatus was significant in some cases, the sound pressure level
produced by the loudspeakers was sufficiently high to ensure a strong peak signal for
all transducers not situated at pressure nodes.

The three transducers in each section were separated by 20 cm for all experiments
below 600 Hz, and by 10 cm for 600 Hz and above. Seybert & Soenarko (1981) have
shown that the two-microphone formula is prone to error as the separation of two
transducers approaches half a wavelength. Thus, no pair of transducers was used in
the formula that was separated by more than 70% of half a wavelength. Furthermore,
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the outer transducers were always at least 20 cm from the ends of the duct, by which
distance the first higher-order mode would have decayed by 100 dB at 1000 Hz.

For a given set of experiments at several frequencies or flow conditions, the output
of the loudspeakers was adjusted so that the sound pressure level at the midpoint of
the upstream duct was constant.

4.2. Results

For comparison with experimental results, the model equations were solved for each
set of flow conditions over the frequency range 0–700 Hz. Configuration 3 was used to
close the equations, with the fluctuations external to the outer liner assumed negligible,
B ′

2 ≈ 0. The latter assumption is justified because the enclosure that encased the liner
system was sufficiently large to provide very little stiffness to the fluctuating flow in
the outer liner, particularly with the unchoked air inlet, which allowed communication
with the environment. For convenience, we summarize the equations here:

dψ+

dx
= −

[
ikL

1 + ū(x)
+

1

2

C1L

Sp

η1

ikL

]
ψ+ − 1

2

C1L

Sp

η1

ikL
(ψ− − B̂1), (4.2a)

dψ−

dx
=

[
ikL

1 + ū(x)
+

1

2

C1L

Sp

η1

ikL

]
ψ− +

1

2

C1L

Sp

η1

ikL
(ψ+ − B̂1), (4.2b)

dB̂1

dx
= −ikLû1, (4.2c)

dû1

dx
= −

[
ikL +

C1L

Sc

η1

ikL
+

C2L

Sc

η2

ikL

]
B̂1 +

C1L

Sc

η1

ikL
(ψ+ + ψ−), (4.2d)

ψ+(0) = 1, ψ−(1) exp(−ik−
d L) − ψ+(1)Rd exp(ik+

d L) = 0, (4.2e, f )

û1(0) = 0, û1(1) = 0, (4.2g, h)

where ū(x) = Mu + (C1L/Sp)Ml,1x and we have set the amplitude of the incident
wave, B+

u , equal to unity. The compliance for each liner is given by (2.29), and the
downstream reflection coefficient by (2.34). These equations are solved for x ∈ [0, 1]
using the shooting method. Once the solution is obtained within the desired tolerance,
the absorption is calculated using equation (3.8), which can also be written in terms
of ψ+ and ψ− as

∆ =
1 + (|Rd |2 − 1)|ψ+(1)|2 − |ψ−(0)|2

1 + |Rd |2|ψ+(1)|2 . (4.3)

Before reporting absorption results, we check that our assumed downstream
boundary condition compares favourably with the experimental results. Figure 3
compares with theory the real and imaginary parts of the reflection coefficient observed
from experiments carried out with a liner bias flow of Mh,1 = 0.023 and no mean
duct flow. The agreement is good, with only slight discrepancy at extrema and at
700 Hz. Figure 4 demonstrates the results with a small mean duct flow, Mu = 0.046,
and liner flow, Mh,1 = 0.030. Once again, the agreement is very good, with a similar
discrepancy at 700 Hz.

In the first set of absorption experiments in figure 5, the mean liner bias flow is set at
Mh,1 = 0.023 with no mean duct flow. The results from experiments at sound pressure
levels of 100 dB and 115 dB are compared with results from solution of the model
equations. The absorption undergoes large oscillations between peaks and troughs
across the entire range of frequencies, reaching 82% at the peaks, but dropping to
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Figure 3. (a) Real and (b) imaginary parts of the downstream reflection coefficient for
Mh,1 = 0.023 and Mu = 0. Experiment: �; model: −−−.
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Figure 4. (a) Real and (b) imaginary parts of downstream reflection coefficient for
Mh,1 = 0.03 and Mu = 0.046. Experiment: �; model: −−−.

as little as 10% at the minima. The similarity of the experimental results at the two
different sound levels confirms that linear absorption mechanisms are dominant. The
model predicts the absorption very well, though there is some disagreement above
kL ≈ 1.75. The measurements at higher frequencies are more prone to experimental
error; the discrepancy at the largest value of kL (corresponding to 700 Hz) is probably
due to such error, as the relative transducer calibration exhibited a large phase shift
near this frequency. The disagreement at the trough of kL ≈ 1.8 can be reasonably
attributed to high sensitivity to the degree of interference between the left- and right-
travelling waves in the liner. At this frequency, as will be explained below, a pressure
minimum occurs at some position in the lined section. The total absorption across
the liner is crucially dependent on the magnitude of the pressure near this minimum.
If this magnitude is over-predicted by the model, then the absorption trough will be
shallower, as is seen in figure 5.

The results from a larger mean bias flow, Mh,1 = 0.041, no mean duct flow, and
sound pressure level at 100 dB are depicted in figure 6. The same oscillatory behaviour
is evident, but the peak absorption values are only around 70% now; the minimum
values are comparable to the previous case, however. At lower frequencies the
agreement of the model with measured values is excellent, but the comparison is
less favourable above kL ≈ 1.7. The experimentally observed absorption is generally
lower in the upper range of frequencies, and only rises to 55% at the final peak,
instead of the 60% predicted by the model.
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Figure 5. Absorption with varying frequency for Mh,1 = 0.023 and Mu = 0.
Experiment, 100 dB: �; experiment, 115 dB: �; model: −−−.
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Figure 6. Absorption with varying frequency for Mh,1 = 0.041 and Mu = 0.
Experiment, 100 dB: �; model: −−−.

We now assess the effect of a small mean duct flow on the absorption. In figure 7 are
depicted the results of experiments conducted with a mean duct flow of Mu = 0.046
and liner bias flow of Mh,1 = 0.030, and at two different sound pressure levels, 100 dB
and 115 dB. The character of the absorption is very similar to that of the previous
cases, with peaks at nearly 80%. As in the first case, no significant variations are
observed in the results from the two different sound pressure levels, so nonlinear
absorption mechanisms are again negligibly small. The model once again predicts the
absorption very well.

In the final case of this type we consider a slightly larger mean duct flow, Mu =
0.057, and a smaller mean bias flow, Mh,1 = 0.009, with a sound pressure level of
100 dB. Figure 8 depicts the results. Though the experimental results exhibit behaviour
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Figure 7. Absorption with varying frequency for Mh,1 = 0.030 and Mu = 0.046.
Experiment, 100 dB: �; experiment, 115 dB: �; model: −−−.
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Figure 8. Absorption with varying frequency for Mh,1 = 0.009 and Mu = 0.057.
Experiment, 100 dB: �; model: −−−.

similar to the previous cases, the model predicts absorption peaks that are more
rounded than in previous cases. Consequently, the agreement is poor near these
peaks, though it is satisfactory at the absorption minima.

The four sets of experiments described were all conducted with constant flow
conditions and varying frequency. They demonstrated that the model performs very
well in predicting the absorption over a range of frequencies. Now we present the
results when the frequency is held fixed and the mean liner bias flow varied. No mean
duct flow is present and the sound pressure level is constant at 100 dB. The absorption
at four different frequencies is depicted in figure 9. Frequencies of kL = 0.89, 1.54 and
2.11 correspond to absorption peaks in the previous cases, and kL = 1.22 corresponds
to a minimum. In the absorption peak cases, the absorption reaches a maximum at
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Figure 9. Absorption with varying mean bias flow and Mu = 0. Experiment, 100 dB: �;
model: −−−.

around 82% at approximately the same flow, Mh,1 ≈ 0.015, and decays gradually as
the flow is increased. The model predicts this behaviour well at low frequencies, but
performs poorly at the highest frequency, kL = 2.11. At kL = 1.22, both experiment
and model agree at a nearly constant value of around 20%.

5. Liner system design
5.1. Maximizing absorption

From a design standpoint, it is desirable to find the geometric and flow parameters for
maximum absorption. Such an optimization problem is complicated by the number of
parameters involved. For example, for a single liner in Configuration 1, the geometric
parameters that appear in the model equations are (dropping the ‘1’ subscript for
brevity): the open-area ratio, σ ; the scaled aperture radius, a/L; the scaled liner
thickness, t/L; and the duct geometric parameter, CL/Sp . The flow parameters are:
the scaled frequency, kL; the aperture Mach number, Mh; and the duct Mach number,
Mu. Furthermore, we will show that the absorption is intimately connected to (and
potentially enhanced by) the downstream configuration, so the design process should
incorporate Rd . An additional liner increases the complexity still further. We will
approach the design process systematically, beginning by identifying our goals and
then reducing the problem to its barest essentials in a single, infinitesimally thin liner.
Only then will we include a second liner in the design, developing an expression that
describes the sharing of absorption between the two liners.

The absorption expression (4.3) provides a useful starting point. Provided the
magnitude of the downstream reflection is less than or equal to unity, as is normally
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Figure 10. Comparison of absorption in a duct with Mh,1 = 0.023 and Mu = 0, and with
downstream length Ld/L = 4.5: −−−; Ld/L = ∞: − − −.

true, this expression confirms what is intuitively obvious, that absorption is large when
the acoustic energy transmitted, |ψ+(1)|2, and reflected, |ψ−(0)|2, by the liner system
are both small. Because the downstream reflection may not be as simple as an open
end, one approach would be to assume nothing about the downstream configuration
and optimize the liner system in a duct that extends to infinity downstream (i.e.
Rd = 0). This approach will lead to adequate results, but does not exploit the potential
enhancement that arises from most practical downstream arrangements. For example,
figure 10 depicts the absorption of a liner system in both semi-infinite and finite duct
configurations. The absorption is substantially increased in certain frequency bands.
It is important to incorporate such enhancement into the design process directly.
Consequently, we will assume that the downstream configuration allows most of the
acoustic energy to reflect back towards the liner (i.e. |Rd | ≈ 1), and optimize the liner
arrangement such that the resulting absorption peaks are as large as possible.

Because small transmission and reflection coincide with large absorption, it is
natural to enquire whether the minima of these two quantities naturally coincide, and
if not, whether we can force them to. In the Appendix, the single-liner equations are
solved in the absence of mean duct flow, and the solution related to the semi-infinite
downstream duct result. Relations (A 7a, b) for the transmitted and reflected energies
immediately exhibit some essential features of the finite-duct results. In particular, the
transmitted wave energy, equation (A 7a), can be enhanced or diminished depending
only on the phase of the product R̃dψ

−
∞(0). The smallest transmission will occur when

this phase is an odd multiple of π,

arg(R̃dψ
−
∞(0)) = (2n − 1)π. (5.1)

Furthermore, larger magnitude of ψ−
∞(0) will lead to greater deviation of this

transmitted wave from its semi-infinite result.
Insight into the reflected wave amplitude is not as easy to obtain: relation

(A 7b) demonstrates that the reflected energy is dependent upon a strong coupling
between the left- and right-going waves in the liner. The phases of R̃dψ

−
∞(0)
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and R̃dψ
−∗
∞ (0)[(ψ−

∞(0))2 − (ψ+
∞(1))2] appear in the denominator and numerator,

respectively. With some rearrangement to isolate R̃d , though, the phases can be
regrouped into the phases of R̃dψ

−
∞(0) and 1 − (ψ+

∞(1)/ψ−
∞(0))2. Thus, minimum

reflection is not simply determined by equation (5.1), but by an intractable expression
involving both phases. In general, these phases are uncorrelated, and therefore the
reflection and transmission minima do not necessarily coincide. Furthermore, because
of the complicated dependence of the semi-infinite solution on frequency, it proves
impractical to tailor the liner so that they do coincide. However, we shall show
that the minima do approximately coincide at low frequency, gradually diverging as
frequency increases.

In fact, relying on the full frequency-dependent solution for optimization is imprac-
tical in many respects, so we instead follow a simpler approach. The long-wavelength
limit kL → 0 of the semi-infinite duct solution, though not interesting in itself, provides
at least a reasonable prediction of the behaviour at low frequency, particularly because
this solution tends to vary more slowly with frequency than R̃d . We will therefore
substitute the limiting values of ψ+

∞(1) and ψ−
∞(0) into the finite-duct relations (A 7a, b),

and optimize the resulting approximate absorption.
With η given by equation (2.29) and t/L = 0, the liner compliance factor η/(ikL)

remains non-zero as kL approaches zero:

lim
kL→0

η

ikL
=

1

2

σ

Mh

. (5.2)

This limit can be interpreted in terms of a loss of dynamic head. A steady jet emerges
from each aperture, in which the steady perturbation of the pressure is related to
the velocity perturbation by p′

j = −Mjv
′
j through a non-dimensional version of

Bernoulli’s theorem. If this jet loses all of its dynamic head as it empties into the duct
and dissipates, then the stagnation pressure (or enthalpy) in the duct will be equal to its
static value in the jet, B ′ ≈ p′

j . The velocity perturbation of the jet is related to the
liner velocity through v′

j = v′/σ . Howe (1979b) argues that the mean jet velocity is
twice the mean aperture velocity because of the vena contracta. Thus, we find that
v′/B ′ ≈ −σ/(2Mh), which is simply the negative of η/(ikL).

The liner equations in the limit of long-wavelength reduce to

dψ+

dx
= −b(ψ+ + ψ−), (5.3a)

dψ−

dx
= b(ψ+ + ψ−), (5.3b)

where

b ≡ CL

4Sp

σ

Mh

. (5.4)

A steady perturbation to the stagnation enthalpy maintains a steady and uniform
difference across the liner, which therefore draws a liner flow that causes the velocity
perturbation to vary linearly along the length of the liner. The semi-infinite duct
transmission and reflection are thus, respectively,

ψ+
∞(1) =

1

1 + b
, ψ−

∞(0) = − b

1 + b
. (5.5)
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Substituting these into the finite-duct expressions, and assuming that |R̃d | = 1, then

|ψ+(1)|2 =
1

(1 + b)2 + b2 − 2b(1 + b) cos φR

, (5.6a)

|ψ−(0)|2 =
(1 − b)2 + b2 + 2b(1 − b) cos φR

(1 + b)2 + b2 − 2b(1 + b) cos φR

, (5.6b)

where φR ≡ arg(−R̃d) = arg(−Rd) + 2kL is a long-wavelength approximation of
arg(R̃dψ

−
∞(0)). The limiting phase of 1 − (ψ+

∞(1)/ψ−
∞(0))2 is either π (when b < 1) or

0 (when b > 1), though both ensure that the minima of reflection and transmission
coincide, which, as equation (5.1) predicts, will occur when φR = (2n − 1)π, where n is
some integer. At these minima the transmitted and reflected energies are determined
by b. At b = 0, the liner is effectively rigid and thus both energies are equal to the
incident energy (since the reflection is perfect). Increasing b causes both the
transmitted and reflected energies to decrease steadily until b = 1/2, at which
the reflected energy is zero but the transmitted energy is still finite. Beyond
b = 1/2, the transmitted energy continues to decay, approaching zero as b → ∞,
but the amount of reflected energy increases. Note that, because the transmitted
energy never reaches zero, the liner system can never absorb all incident acoustic
energy.

Substituting (5.6a, b) into the absorption expression (4.3), we arrive at

∆ =
2b(1 − cos φR)

1 + b(b + 1)(1 − cos φR)
. (5.7)

As expected, the absorption maxima occur at the coincident minima of reflection and
transmission, at φR = (2n − 1)π. The value of b that gives the greatest absorption
at these maxima is 1/

√
2, at which ∆ = 0.8284. Therefore, for a single liner

configuration, the liner parameters should as closely as possible obey(
Mh

σ

)
opt

=
CL/Sp

2
√

2
. (5.8)

This optimum relation will become less valid at higher frequency, particularly if R̃d

does not vary significantly faster with kL than the semi-infinite duct results (for
instance, when Ld/L � 1). But it should at least provide a reasonable guideline for
choosing parameters. Note that the ratio of hole diameter to liner length, a/L, does
not appear in this expression.

When there are two liners, the absorption load is shared by both liners. Again,
we make the assumption that the semi-infinite downstream duct solution varies more
slowly with frequency than R̃d . Because of the relationships between the geometric
and flow parameters, it can be verified that the differential equation for the acoustic
velocity between the liners (equation (2.21b)) reduces to

du1

dx
= −2b

(C1/C2)
2

1 − (C1/C2)2

{[
1 +

(
C2

C1

)2(
σ2

σ1

)2
]
B̂1 − ψ+ − ψ−

}
, (5.9)

where b is defined as before. The stagnation enthalpy fluctuations both in the duct
and between the liners are uniform, and thus the solution of (5.9) must vary linearly.
However, to satisfy the no-throughflow conditions at both ends of the liner, there
can be no variation and the term in curly brackets in (5.9) must vanish. Thus the
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stagnation enthalpy fluctuations on either side of the inner liner are related by[
1 +

(
C2

C1

)2 (
σ2

σ1

)2
]
B̂1 = ψ+ + ψ− = B̂. (5.10)

Substituting this into the corresponding duct equations, we arrive at

dψ+

dx
= − b

(σ1/σ2)2(C1/C2)2 + 1
(ψ+ + ψ−), (5.11a)

dψ−

dx
=

b

(σ1/σ2)2(C1/C2)2 + 1
(ψ+ + ψ−). (5.11b)

Comparing these with (5.3a, b) reveals that we need only modify our definition of the
parameter b when a second liner is included, and thus the optimal value of Mh,1/σ1

is now (
Mh,1

σ1

)
opt

=
(Mh/σ )opt,sl

(σ1/σ2)2(C1/C2)2 + 1
, (5.12)

where (Mh/σ )opt,sl is the single-liner result given by (5.8). For small σ1/σ2, the inner
liner is absorbing the larger fraction of energy. As σ1/σ2 grows the absorption load is
transferred to the outer liner, and when σ1/σ2 = C2/C1, the liners share the load eq-
ually. Note that, because C2/C1 > 1, identical inner and outer liners do not absorb
equally.

Note that expression (5.12) does not provide guidance on how to choose the ratios
C1/C2 or σ1/σ2. Our simple long-wavelength approach only states that, provided the
parameters are chosen to satisfy (5.12), the absorption peaks of the liner system will
be approximately 83%. Solution of the full model reveals that certain choices of these
ratios do lead to marginally better absorption, but the improvement is too slight to
be incorporated into the design process.

It is useful to check these expressions with the experimental results of § 4. For the
liner system used, C1L/Sp = 5.58, C2/C1 = 1.20, σ1 = 0.040 and σ2 = 0.020. Thus,
equation (5.8) predicts (Mh/σ )opt,sl = 1.97 and relation (5.12) produces (Mh,1/σ1)opt =
0.52. The optimal aperture Mach number, Mh,1 = 0.021, compares favourably with
the observed peak in the experimental results of figure 9, which occurs at Mh,1 ≈ 0.015
for the three peak frequencies. Furthermore, the predicted absorption of 83% is very
close to the observed values at the peaks in figure 9.

5.2. Positions of absorption extrema

In the previous section we used the argument that the long-wavelength limit of the
semi-infinite duct solution could be used for deriving the optimal parameters. We now
explore whether the same limit can be used to predict the positions of absorption
extrema.

Expressions (5.6a, b) indicate that the minima and maxima of the finite-duct
reflection coincide with those of the transmission at low frequency, at values of
kL determined by φR = (2n − 1)π and φR = 2nπ, respectively. Consequently, the
absorption maxima are quite strong at low frequency, as indeed are the absorption
minima. Our approximate expression for the absorption predicts that it will vanish
entirely at the minima. Though this is not true in practice, the minimum values
observed in the experimental results of § 4 are indeed quite small.
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Figure 11. Acoustic energy flux through the liner for a single-liner system at Mh,1 = 0.04
at (a) kL = 0.60 and (b) kL = 0.98. Ld/L = 4.5: −−−; Ld/L = ∞: − − −.

However, whilst the long-wavelength limit successfully predicts the value of
maximum absorption at finite frequencies when the parameters are optimal (as
comparison with figure 9 demonstrated), the values of kL at which the absorption
extrema occur are poorly predicted by φR = (2n − 1)π and φR = 2nπ. As frequency
increases, the phases of the semi-infinite transmission and reflection amplitudes both
drift from their long-wavelength values. Consequently, the phase of R̃dψ

−
∞(0) deviates

from φR , and the peaks and troughs of transmission and reflection tend to separate.
Instead of relying on the same limiting approach for predicting the frequencies of
absorption extrema, we will develop semi-empirical relations.

The acoustic energy flux through the liner provides insight into the absorption
minima. Figure 11(a) depicts (the negative of) the liner energy flux for a single-liner
system with mean bias flow Mh,1 = 0.040 at kL = 0.60, which corresponds to
an absorption minimum. The results for both finite (open-ended) and semi-infinite
downstream ducts are shown. The plot reveals that for the finite-length case, the
energy flux through the liner is negligibly small at a position approximately 54% of
the liner length. The total absorption, which corresponds to the area under the liner
flux curve, is consequently small.

A node in the stagnation enthalpy at this position of minimum flux prevents energy
from travelling through the liner. The presence of the node is made possible by the
downstream reflection, which leads to a standing wave supported by the downstream
section as well as a latter portion of the lined section. In fact, the frequencies of
minimum absorption can be predicted approximately by using this standing-wave
argument. For certain ranges of frequencies, the standing wave will have a node in
the lined section. The node is not complete because liner absorption prevents total
interference, and it becomes weaker as it moves toward the upstream end of the
section. Minimum absorption occurs when the influence of this node has the greatest
axial extent, which occurs when the node is located at some fractional distance φ

from the downstream end of the lined section. For example, in figure 11(a), φ ≈ 0.46.
Since the open duct ensures a node at the duct exit, frequencies at which multiples
of half-wavelengths are supported in the section of scaled length Ld/L + φ + δ/L,
where δ/L is a correction length to account for absorption, approximately coincide
with absorption minima, predicted by

(kL)(n)
min =

nπ

Ld/L + φmin + δmin/L
. (5.13)
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From an analysis of results for several values of Ld/L and Mh,1, in both single- and
double-liner systems, we have found that when

φmin ≈ 0.46, δmin/L ≈ 0.05, (5.14)

the frequencies are predicted well by (5.13).
The standing-wave argument does not apply as neatly to predicting absorption

maxima. The liner energy flux does not attain a relative maximum in the lined section
at maximum absorption as it does a relative minimum for minimum absorption.
Rather, as figure 11(b) shows, the energy flux is maximum at the liner entrance and
decays steadily with distance as energy is absorbed. Thus, it is difficult to argue
for odd multiples of quarter-waves in some duct length coinciding with absorption
maxima. However, the results for several sets of parameters can be reduced to a
similar relation to (5.13), again for an open-ended duct,

(kL)(n)
max =

(n − 1/2)π

Ld/L + φmax + δmax/L
, (5.15)

where, maintaining the same correction length as above,

φmax ≈ 0.60, δmax/L ≈ 0.05. (5.16)

It is important to note that the form assumed for the extrema positions will not hold
in all circumstances. When the downstream duct is longer than the liner, the approach
predicts the positions well. However, as Ld approaches L or becomes smaller, the
formulae become increasingly sensitive to φ and δ/L, which must ultimately include
their own frequency dependences.

5.3. Alternative definition of absorption

Equation (3.8) is not the only definition of absorption, and in some cases there are
other definitions more appropriate for assessing the performance of an absorbing
device. An absorption system is often used to prevent acoustic waves in a duct
from returning to their source, and thus mitigate the growth of acoustically driven
instabilities. The acoustic energy that is transmitted downstream of the liner section
is inconsequential, particularly for a downstream section in which the bulk of this
transmitted energy is reflected by the exit. In these circumstances, when |Rd | ≈ 1,
equation (3.8) reduces to

∆ ≈ |B+
u |2 − |B−

u |2
|B+

u |2 + |B+
d |2 . (5.17)

An alternative definition for the absorption is

∆R ≡ 1 − |B−
u |2

|B+
u |2 , (5.18)

which is effectively a renormalization of the traditional absorption of (5.17). This new
definition represents the deficit in the energy reflected upstream. For example, for an
open-ended duct in the absence of any absorption system, nearly all energy travelling
away from the source is reflected back toward it, and ∆R ≈ 0. In contrast, a value of
1 for ∆R would indicate that all outgoing energy is either absorbed or transmitted.

Figure 12 compares the two definitions of absorption using the model results in a
two-liner system for the case of Mh,1 = 0.023 and Mu = 0. The corresponding experi-
mentally measured values of ∆R are included, as well. Both absorption definitions
oscillate with frequency, with extrema at the same frequencies. The absorption peaks



The absorption of axial acoustic waves by a perforated liner with bias flow 331

0.6

0.4

0.2

0 0.5 1.0 1.5
kL

D
, D

R

2.0

0.8

1.0

Figure 12. Comparison of absorption definitions for a double-liner system with
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Figure 13. Evaluation of liner performance when varying Ld/L with Mh,1 = 0.023 and
Mu = 0. (a) Ld/L = 4.5, (b) Ld/L = 2.25, and (c) Ld/L = 1.13.

of ∆R rise to 100%, however. Moreover, the absorption troughs are higher and become
much shallower with increasing frequency (the low experimental value at kL ≈ 1.8
was attributed in § 4.2 to a sensitive dependence on left/right wave cancellation).

This liner design is an example of an effective absorption system, but only very near
the discrete frequencies of peak absorption. It is often the case that the frequencies
of acoustic waves that should be suppressed are not known a priori, and thus
it is undesirable for an absorption system to have such narrow bandwidths of
effectiveness. We can use the analysis of § 5.2 to improve the design by spreading the
absorption minima apart. Equation (5.13) suggests that this can be accomplished by
decreasing the downstream duct length, Ld/L. In figure 13 the effect of varying Ld/L
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is demonstrated. As Ld/L is first halved and then quartered, the absorption troughs
are more separated and made more shallow. Furthermore, the absorption peaks are
widened and maintained at 100%.

The extrema formulae, (5.13) and (5.15), can also be used effectively for predicting
the minima and maxima of the alternative absorption, provided that kL is sufficiently
small so that the reflection and transmission extrema are close, as discussed in § 5.2. It
is useful to validate the formulae with the model results of figure 13. For Ld/L = 4.5,
the minima are predicted to lie at kL = 0.63, 1.25 and 1.88, and the maxima at
kL = 0.31, 0.92, and 1.53. These values are all near the observed values, though
they tend to slightly overshoot the larger frequencies. At Ld/L = 2.25, the predicted
minimum at kL = 1.14 and maxima at kL = 0.54 and 1.62 agree reasonably well, but
with more overshoot at smaller kL than in the previous case. Finally, at Ld/L = 1.13,
the first maximum appears near its expected position at kL = 0.88, but the first
minimum occurs at a significantly smaller frequency than the predicted position of
kL = 1.92. The usefulness of the formulae is limited at this small Ld/L.

6. Conclusions
In this work we have investigated the effectiveness of a perforated liner system

with mean bias flow in the absorption of planar acoustic waves in a circular duct.
The lined section of duct is composed of a homogeneous array of circular apertures,
surrounded by a radially external region of larger mean pressure that forces a steady
flow through each aperture. Planar sound waves produced by an upstream source
travel through the lined section, subjecting each aperture to a harmonic pressure
difference that causes the periodic shedding of vorticity from the aperture rim. The
mechanism for absorption lies in this one-way transfer of acoustic energy into vortical
energy, which is subsequently dissipated. Moreover, the fraction of incident acoustic
energy that is absorbed is independent of the magnitude of the pressure difference.
This linear mechanism is embodied in the aperture Rayleigh conductivity derived by
Howe (1979b). In this work, we have developed a one-dimensional duct model with
a homogeneous liner compliance based on this Rayleigh conductivity. The model is
capable of describing both single- and double-liner configurations.

The comparison of this model with our experimental results demonstrates excellent
agreement for a large range of frequencies and mean flow conditions. We have shown
that such a system, when included in a duct whose termination allows most acoustic
energy to reflect upstream for further interaction with the liner, can absorb as much
as 83% of incident energy at certain frequencies, and prevent 100% of the outgoing
energy from reflecting back to the source. Our analysis of the acoustic energy flux has
revealed the local absorptive character of the liner. In particular, it has demonstrated
that both liners in a double-liner system are important for absorption. Also, we
have shown that the absorption troughs that occur at frequencies between the peaks
are due to pressure nodes in the liner that limit the local absorption. The effect of
these nodes is crucially dependent on the length of the downstream duct. As this
length is shortened, the absorption troughs separate with respect to frequency and
the absorption peaks consequently become broader.

Further insight has been gained by reducing the model equations through a long-
wavelength limit kL → 0 that identified the parameter b = 1

4
(CL/4Sp)(σ/Mh) as

particularly important in determining the effectiveness of the liner system as an
absorber. As we have shown, these reduced equations contain an absorption term
that can be interpreted as a loss in dynamic head of the steady jets issuing from
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each aperture in the liner. Provided that the flow conditions and geometry of a single
liner are designed so that b ≈ 1/

√
2, the absorption peaks will be nearly maximal.

Furthermore, we have shown that a double-liner configuration is equally effective
when designed using a modified expression for b that accounts for the absorption
load shared by each liner.

The mechanism for absorption implicit in the model is the same as that included in
the reflection coefficient of Hughes & Dowling (1990), who also adapted the Rayleigh
conductivity of Howe (1979b). The absorption of impinging acoustic waves considered
by Hughes & Dowling (1990) depends on proximity to a Helmholtz resonance
condition, involving the imaginary cavity behind each aperture. Absorption in the
present model, however, is identified with the cumulative effect of local absorption
over a duct section of finite length. The present work involves combining these two
approaches to predict the absorption of both axial and radial acoustic modes.

It should be noted that, though we have only considered planar duct modes in this
work, the liner system will also absorb circumferential modes by the same mechanism.
A similar analysis is currently being undertaken to quantify its effectiveness in this
respect. Also, the model equations can be adapted to incorporate combustion by
allowing a mean temperature difference across the inner liner. Hughes & Dowling
(1990) included an analysis that assumed that, in the presence of high combustion
temperatures, the mean bias flow creates a thin layer adjacent to the liner with ‘cold’
properties. In the present case, acoustic waves only travel parallel to this layer rather
than impinging upon it, so the effect of combustion would be limited to modifying
the speed of sound and mean density in the duct.

This work was supported by the PRECCINSTA project, Contract No. ENK5-
CT2000-00099, which was sponsored by the Fifth European Community Framework
Programme. The authors are indebted to Dr Iain Dupère for many useful discussions.
We would also like to thank Mr Dave Martin for building the experimental apparatus.

Appendix. Analytical solution of single-liner equations
In this Appendix we solve the liner equations (2.14a, b) for the special case of a

single liner exposed to the ambient environment (Configuration 1). We will assume
that there is no mean upstream duct flow, ūu = 0, and that the liner bias flow is
sufficiently small that ūd ≈ 0. Thus, the liner equations reduce to the system

dψ+

dx
= −

(
ikL +

Γ

2

η

ikL

)
ψ+ − Γ

2

η

ikL
ψ−, (A 1a)

dψ−

dx
=

(
ikL +

Γ

2

η

ikL

)
ψ− +

Γ

2

η

ikL
ψ+, (A 1b)

where Γ ≡ CL/Sp , and the numerical liner subscript has been removed for brevity.
The boundary conditions are

ψ+(0) = 1, (A 2a)

ψ−(1) − R̃dψ
+(1) = 0. (A 2b)

The factor R̃d is a modified reflection coefficient, related to the previously defined
coefficient by R̃d = Rd exp(i2kL). We have assumed that all acoustic quantities are
scaled by the incident wave amplitude, B+

u .
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The eigenvalues of this system of two first-order linear equations are given by

λ = ±(−k2L2 + Γ η)1/2. (A 3)

The expression under the square root is complex and to avoid messy formulae the
eigenvalues are left unevaluated. The solution of the system is

ψ+(x) =
[(λ2 − k2L2) + R̃d(λ

2 + k2L2)] sinh λ(1 − x) + i2kLλ cosh λ(1 − x)

[(λ2 − k2L2) + R̃d(λ2 + k2L2)] sinh λ + i2kLλ cosh λ
, (A 4a)

ψ−(x) =
[(λ2 + k2L2) + R̃d(λ

2 − k2L2)] sinh λ(1 − x) − i2kLλR̃d cosh λ(1 − x)

[(λ2 − k2L2) + R̃d(λ2 + k2L2)] sinh λ + i2kLλ cosh λ
.

(A 4b)

Equations (A 4a, b) do not readily provide understanding of the physics in the lined
section. However, it is useful to relate this solution, for which the reflection coefficient
is general, to the solution for R̃d = 0, which corresponds to a semi-infinite downstream
section. With some manipulation, it can be shown that

ψ+
∞(0)ψ+(x) = ψ+(0)ψ+

∞(x) + ψ−(1)ψ−
∞(1 − x), (A 5a)

ψ+
∞(0)ψ−(x) = ψ+(0)ψ−

∞(x) + ψ−(1)ψ+
∞(1 − x), (A 5b)

where the subscript ∞ denotes the semi-infinite duct solution. Though the physical
significance of these relations is limited, they provide useful expressions when
evaluated at the ends of the lined section. When the first is evaluated at x =1 and the
second at x =0, the wave amplitudes of both solutions in the upstream and down-
stream ducts are related:

ψ+
∞(0)ψ+(1) = ψ+(0)ψ+

∞(1) + ψ−(1)ψ−
∞(0), (A 6a)

ψ+
∞(0)ψ−(0) = ψ+(0)ψ−

∞(0) + ψ−(1)ψ+
∞(1), (A 6b)

providing, in effect, a transfer function from the incoming waves, ψ+(0) and ψ−(1),
to the outgoing waves, ψ+(1) and ψ−(0). An obvious application of this transfer
function is for transforming results for a duct of general end condition into results
for a semi-infinite duct.

When we apply the boundary conditions on ψ+ and ψ− to relations (A 6a, b),
rearrange, and take their absolute values, we arrive at

|ψ+(1)|2 =

∣∣∣∣ ψ+
∞(1)

1 − R̃dψ−
∞(0)

∣∣∣∣
2

, (A 7a)

|ψ−(0)|2 =

∣∣∣∣ψ−
∞(0) − R̃d[(ψ

−
∞)2(0) − (ψ+

∞)2(1)]

1 − R̃dψ−
∞(0)

∣∣∣∣
2

. (A 7b)
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